更多>>精华博文推荐
更多>>人气最旺专家

王茂孙

领域:黄河 新闻网

介绍:例如:统计出陶诗用事以《庄子》为最多,49次;其次《论语》,37次;再次《列子》,21次。...

笹岛薰

领域:挂号网

介绍:一、质量安全“十严禁”红线(五)施工总承包单位将房屋建筑工程的主体结构的施工分包给其他单位的,钢结构工程除外;(六)专业分包单位将其承包的专业工程中非劳务作业部分再分包的;一、质量安全“十严禁”红线(七)劳务分包单位将其承包的劳务再分包的;(八)劳务分包单位除计取劳务作业费用外,还计取主要建筑材料款、周转材料款和大中型施工机械设备费用的;(九)法律法规规定的其他违法分包行为。利来国际AG打不开,利来国际AG打不开,利来国际AG打不开,利来国际AG打不开,利来国际AG打不开,利来国际AG打不开

凯时娱乐 共赢共欢乐ag优惠
本站新公告利来国际AG打不开,利来国际AG打不开,利来国际AG打不开,利来国际AG打不开,利来国际AG打不开,利来国际AG打不开
jvw | 2018-12-19 | 阅读(390) | 评论(920)
PAGE考点44两点间的距离公式要点阐述要点阐述两点间的距离公式两点坐标P1(x1,y1),P2(x2,y2)距离公式|P1P2|=特例若O(0,0),P(x,y),则|OP|=典型例题典型例题【例】某地东西有一条河,南北有一条路,A村在路西3千米、河北岸4千米处;B村在路东2千米、河北岸eq\r(3)千米处.两村拟在河边建一座水力发电站,要求发电站到两村距离相等,问:发电站建在何处?到两村的距离为多远?【解题技巧】两点间的距离公式可用来解决一些有关距离的问题,根据题目条件直接套用公式即可,要注意公式的变形应用,公式中两点的位置没有先后之分.小试牛刀小试牛刀1.已知M(2,1),N(-1,5),则|MN|等于(  )A.5B.eq\r(37)C.eq\r(13)D.4【答案】A【解析】|MN|=eq\r(2+12+1-52)=5.【思想方法】坐标平面内两点间的距离公式,是解析几何中的最基本最重要的公式之一,利用它可以求平面上任意两个已知点间的距离.反过来,已知两点间的距离也可以根据条件求其中一个点的坐标.2.已知点A(-2,-1),B(a,3),且|AB|=5,则a的值为(  )A.1B.-5C.1或-5D.-1或5【答案】C【解析】由|AB|==5,可知(a+2)2=9.∴a=1或-5.3.一条平行于轴的线段的长是5,它的一个端点是,则它的另一个端点的坐标是(  )A.(–3,1)或(7,1)B.(2,–3)或(2,7)C.(–3,1)或(5,1)D.(2,–3)或(2,5)【答案】A【解析】设B(a,1),则,或7.4.光线从点A(-3,5)射到x轴上,经反射后经过点B(2,10),则光线从A到B的距离是(  )A.5eq\r(2)B.2eq\r(5)C.5eq\r(10)D.10eq\r(5)【答案】C【规律方法】(1)两点间的距离公式与两点的先后顺序无关,利用此公式可以将有关的几何问题转化成代数问题进行研究.(2)当点,在直线上时,=.5.若点在轴上,点在轴上,线段的中点的坐标为(3,4),则的长度为(  )A.10B.5C.8D.6【答案】A6.两直线3ax-y-2=0和(2a-1)x+5ay-1=0分别过定点A,B,则|ABA.eq\f(\r(89),5)B.eq\f(17,5)C.eq\f(13,5)D.eq\f(11,5)【答案】C【解析】直线3ax-y-2=0过定点A(0,-2),直线(2a-1)x+5ay-1=0,过定点Beq\b\lc\(\rc\)(\a\vs4\al\co1(-1,\f(2,5))),由两点间的距离公式,得|AB|=eq\f(13,5).考题速递考题速递1.以A(5,5),B(1,4),C(4,1)为顶点的三角形是(  )A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【答案】B【解析】∵|AB|=eq\r(17),|AC|=eq\r(17),|BC|=3eq\r(2),∴三角形为等腰三角形.故选B.2.已知点A(1,2),B(7,10),则以为斜边的直角三角形斜边上的中线长为(  )A.5B.7C.9D.10【答案】A【解析】,∴中线长是5.3.在直线上求点,使点到点的距离为,则点坐标是(  )A.(5,5)B.(–1,1)C.(5,5)或(–1,1)D.(5,5)或(1,–1)【答案】C4.已知,,当取最小值时,求实数的值.【解析】由两点间的距离公式得.∴当时,取最小值.数学文化数学文化距离两点间的距离(两点之间线段最短)【阅读全文】
利来国际AG打不开,利来国际AG打不开,利来国际AG打不开,利来国际AG打不开,利来国际AG打不开,利来国际AG打不开
2oj | 2018-12-19 | 阅读(782) | 评论(392)
囚笼政策:以铁路为柱,公路为链,碉堡为锁,并配以封锁墙、封锁沟2.概况百团大战时间地点指挥主要目标1940年下半年华北彭德怀领导10多个团破袭日军交通线,摧毁敌人交通线两侧及抗日根据地内的日伪据点彭德怀八路军第一二零师重点拆毁正太路张净至桑掌段的铁路我军于晓雾中围攻敌井陉煤矿狮垴山战斗中的我军机枪阵地八路军攻克涞源东团堡后,战士们在长城烽火台上欢呼胜利【阅读全文】
l1p | 2018-12-19 | 阅读(120) | 评论(775)
我们是xx的防损队伍,我们的防损队伍就是xx的一个重要机器,我们的权利是xx所赋予的,我们的义务就是要全力为xx超市服务,行使防损治理的职责(权利)和义务,要放心大胆的工作,不仅要观察每一个顾客的行为,而且、从各个员工到每一个经理,我们的防损员都有监视他们工作的权利,不管是谁,只要发现他有违反司规制度的行为,防损员就要及时地指出和纠正,有权直接解决和向上级汇报。【阅读全文】
rsd | 2018-12-19 | 阅读(958) | 评论(833)
一、质量安全“十严禁”红线(三)严禁内业资料弄虚作假。【阅读全文】
du1 | 2018-12-19 | 阅读(76) | 评论(717)
总结是应用写作的一种,是对已经做过的工作进行理性的思考。【阅读全文】
lwy | 2018-12-18 | 阅读(527) | 评论(744)
是我国社会主义初级阶段的基本经济制度,是中国特色社会主义制度的重要支柱,也是社会主义市场经济体制的根基。【阅读全文】
kqr | 2018-12-18 | 阅读(903) | 评论(742)
“每个人都希望有更多的涉猎,希望有更多自己价值观的体系。【阅读全文】
0ny | 2018-12-18 | 阅读(178) | 评论(521)
质量提高价格降低调动和运用知识、论证和探讨问题的能力市场调节发挥促使(2012年安徽高考)为推进社会主义核心价值体系建设,某网站开设“思想道德论坛”,引起网【阅读全文】
利来国际AG打不开,利来国际AG打不开,利来国际AG打不开,利来国际AG打不开,利来国际AG打不开,利来国际AG打不开
ypf | 2018-12-18 | 阅读(175) | 评论(262)
备注:按照流程,要召开2个党员大会,1个支部委员会。【阅读全文】
1cj | 2018-12-17 | 阅读(240) | 评论(987)
 极大值与极小值学习目标重点难点1.记住函数的极大值、极小值的概念.2.结合图象知道函数在某点取得极值的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大、极小值.重点:利用导数求函数的极值.难点:函数极值的判断和与极值有关的参数问题.1.极值(1)观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调________变为单调________),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个________.(2)类似地,上图中f(x2)为函数的一个________.(3)函数的极大值、极小值统称为函数的______.预习交流1做一做:函数y=-|x|有极______值______.2.极值点与导数的关系观察上面的函数的图象,发现:(1)极大值与导数之间的关系如下表:xx1左侧x1x1右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)增极大值f(x1)减(2)极小值与导数之间的关系如下表:xx2左侧x2x2右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)减极小值f(x2)增预习交流2做一做:函数f(x)=3x-x3的极大值为________,极小值为________.预习交流3议一议:(1)导数为0的点一定是函数的极值点吗?(2)函数在极值点处的导数一定等于0吗?(3)一个函数在一个区间的端点处可以取得极值吗?(4)一个函数在给定的区间上是否一定有极值?若有极值,是否可以有多个?极大值一定比极小值大吗?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)递增 递减 极大值 (2)极小值 (3)极值预习交流1:提示:大 02.(1)>0 =0 <0 (2)<0 =0 >0预习交流2:提示:f′(x)=3-3x2,令f′(x)=0得x=±1,由极值的定义可得函数的极大值为f(1)=2,极小值为f(-1)=-2.预习交流3:提示:(1)不一定,例如对于函数f(x)=x3,虽有f′(0)=0,但x=0并不是f(x)=x3的极值点,要使导数为0的点成为极值点,还必须满足其他条件.(2)不一定,例如函数f(x)=|x-1|,它在x=1处取得极小值,但它在x=1处不可导,就更谈不上导数等于0了.(3)不可以,函数在一个区间的端点处一定不可能取得极值,因为不符合极值点的定义.(4)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值也不一定比极大值小.一、求函数的极值求下列函数的极值:(1)f(x)=x3-12x;(2)f(x)=eq\f(2x,x2+1)-2.思路分析:首先从方程f′(x)=0入手,求出在函数f(x)的定义域内所有可能的极值点,然后按照函数极值的定义判断这些点是否为极值点.1.函数y=1+3x-x3有极大值__________,极小值__________.2.求函数f(x)=x3-3x2-9x+5的极值.利用导数求函数极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的所有实数根;(3)考察在每个根x0附近,从左到右导函数f′(x)的符号如何变化:①如果f′(x)的符号由正变负,则f(x0)是极大值;②如果由负变正,则f(x0)是极小值;③如果在f′(x)=0的根x=x0的左右侧f′(x)的符号不变,则不是极值点.二、已知函数的极值求参数范围已知函数f(x)=ax3+bx+2在x=1处取得极值,且极值为0.(1)求a,b的值;(2)求f(x)的另一个极值.思路分析:由极值的定义可知f′(1)=0,再结合f(1)=0,建立关于a,b的方程即可求得a,b的值,从而得出另一个极值.1.已知函数y=-x3+6x2+m有极大值13,则m的值为________.2.若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是__________.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和已知极值(或极值之间的关系)列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.对于可导函数f(x),若它有极值点x0,则必有f′(x0)=0,因此函数【阅读全文】
l9v | 2018-12-17 | 阅读(650) | 评论(511)
认为金银充足是国家富裕标志,鼓励出口,禁止或限制进口凯恩斯1936年出版《就业、利息和货币通论》,主张加强国家对经济的干预20世纪70年代爆发经济危机并出现“滞涨”亚当斯密1776年发表《国富论》,主张自由经营、自由竞争和自由贸易1929-1933年经济危机发生,传统的自由放任经济政策失去作用新自由主义反对政府干预经济或主张适度干预、混合经济对欧美资本主义经济的发展起了重要作用80、90年代经济增长,进入新的发展周期经济政策贫富差距扩大股票投机过度信贷消费过度经济危机生产和销售矛盾直接原因根本原因激化产生激化激化资本主义的基本矛盾一、1929—1933年资本主义世界经济危机1.原因:(1)根本原因:资本主义制度的基本矛盾(即生产社会化和生产资料私人占有之间的矛盾)(2)具体原因:贫富差距扩大股票投机过度信贷消费过度生产和销售的矛盾(直接原因)1929年,10月24日,纽约华尔街股市崩溃大批银行倒闭,企业破产,市场萧条;失业人数激增;农产品价格下降2.标志:3.表现:“黑色星期四”4、经济危机的特点:材料1:一般的经济危机持续一年最多不过两年,而这场危机持续了4年之久。【阅读全文】
kv9 | 2018-12-17 | 阅读(82) | 评论(647)
方法要么就重新换面料,司损失惨重,要么。【阅读全文】
kr0 | 2018-12-17 | 阅读(550) | 评论(117)
”昨日凌晨她又通过微博表示:“以后我会更加努力,一切只是开始。【阅读全文】
soj | 2018-12-16 | 阅读(989) | 评论(864)
(二)强化对社会事业的监督。【阅读全文】
rny | 2018-12-16 | 阅读(985) | 评论(175)
PAGE考点41两条直线的交点坐标要点阐述要点阐述1.两条直线的交点已知两直线l1:A1x+B1y+C1=0;l2:A2x+B2y+C2=0.若两直线方程组成的方程组eq\b\lc\{\rc\(\a\vs4\al\co1(A1x+B1y+C1=0,A2x+B2y+C2=0))有唯一解eq\b\lc\{\rc\(\a\vs4\al\co1(x=x0,y=y0)),则两直线相交,交点坐标为.2.方程组的解的个数与两直线的位置关系方程组的解交点两直线位置关系无解两直线无交点平行有唯一解两条直线有1个交点相交有无数个解两条直线有无数个交点重合典型例题典型例题【例】两条直线和的交点在轴上,那么的值是(  )A.–24B.6C.6D.以上都不对【答案】C【思路归纳】这类问题,一般先求出交点,让交点满足所在象限的条件,来解决相关问题.小试牛刀小试牛刀1.直线x+2y-2=0与直线2x+y-3=0的交点坐标是(  )A.(4,1)B.(1,4)C.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,3),\f(1,3)))D.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3),\f(4,3)))【解题技巧】把求两条直线的交点问题转化为求它们所对应的方程组成的方程组的解的问题.2.经过直线l1:x-3y+4=0和l2:2x+y+5=0的交点,并且经过原点的直线的方程是(  )A.19x-9y=0B.9x+19y=0C.3x+19y=0D.19x-3y=0【答案】C【解析】由eq\b\lc\{\rc\(\a\vs4\al\co1(x-3y+4=0,,2x+y+5=0,))得eq\b\lc\{\rc\(\a\vs4\al\co1(x=-\f(19,7),,y=\f(3,7).))∴l1与l2的交点坐标为eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(19,7),\f(3,7))).∴所求的直线方程为y=-eq\f(3,19)x,即3x+19y=0.故选C.3.直线y=3x-4关于点P(2,-1)对称的直线l的方程是(  )A.y=3x-10B.y=3x-18C.y=3x+4D.y=4x+3【答案】A【解析】设M(x,y)是l上任一点,M关于P(2,-1)的对称点为M′(4-x,-2-y)在直线y=3x-4上,则-2-y=3(4-x)-4,整理得y=3x-10.故选A.【解题技巧】点关于直线的对称问题可转化为中点和垂直问题来解决.4.直线y=2x+10,y=x+1,y=ax-2交于一点,则a的值为(  )A.eq\f(1,2)B.-eq\f(1,2)C.eq\f(2,3)D.-eq\f(2,3)【答案】C【解析】由eq\b\lc\{(\a\vs4\al\co1(y=2x+10,,y=x+1,))解得eq\b\lc\{(\a\vs4\al\co1(x=-9,,y=-8,))即直线y=2x+10与y=x+1相交于点(-9,-8),代入y=ax-2,解得a=eq\f(2,3).5.两条直线和的交点在第四象限,则的取值范围是(  )A.(–6,2)B.C.D.【答案】C【解析】解出交点,由不等式组解得.6.若三条直线l1:x-y=0,l2:x+y-2=0,l3:5x-ky-15=0能构成一个三角形,求k的取值范围.考题速递考题速递1.经过直线2x-y+4=0与x-y+5=0的交点,且垂直于直线x-2y=0的直线方程是(  )A.2x+y-8=0B.2x-y-8=0C.2x+y+8=0D.2x-y+8=0【答案】A【解析】首先解得交点坐标为(1,6),再根据垂直关系得斜率为-2,可得方程y-6=-2(x-1),即2x+y-8=0.2.已知直线与的交点在轴上,则的值为()A.4B.–4C.–4或4D.与的取值有关【答案】B【解析】由得.∵交点在轴上,∴,∴.3.已知两条直线l1:ax+3y-3=0,l2:4x+6y-1=0,若l1与l2相交,则实数a满足的条件是________.【答案】a≠2【解析】l1与l2相交则有:eq\f(a,4)≠eq\f(3,6),∴a≠2.4.求过两条直线x-2y+4=0和x+y-2=0的交点P,且满足下列条件的直线方程.(1)过点Q(2,-1);(2)与直线3x-4y+5=0垂直.数学文化数学文化相交直线相交直线在实【阅读全文】
一周热点
本站互助
共5页

友情链接,当前时间:2018-12-19

老牌利来 利来娱乐城 利来国际老牌博彩 利来国际旗舰版 利来国际官网平台
利来国际最给利的老牌最新 利来国际ag旗舰厅app 利来国际老牌软件 利来娱乐帐户 利来国际旗舰厅怎么
利来娱乐w66 利来娱乐在线平台 利来AG旗舰厅 利来国际老牌博彩 利来国际手机版
利来国际手机客户端 利来娱乐网 利来国际W66 利来电游官方网站 利来国际最给利的老牌
通山县| 平陆县| 江永县| 太原市| 铁力市| 都江堰市| 宜州市| 拉孜县| 宝山区| 镇江市| 奎屯市| 谢通门县| 顺昌县| 齐河县| 织金县| 宁南县| 三穗县| 湛江市| 清涧县| 广丰县| 石狮市| 盱眙县| 错那县| 屯留县| 贵阳市| 偏关县| 泸溪县| 桓仁| 防城港市| 灵璧县| 安宁市| 三门峡市| 日照市| 宽甸| 宁津县| 河东区| 清原| 绵竹市| 南溪县| 额济纳旗| 洪雅县| http:// http:// http:// http:// http:// http://